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The two-dimensional version of the KKR eigenvalue equation is analysed in different limiting situations. 
and reduction due to symmetry is discussed. With the aid of the semiclassical approximation to the 
Bloch functions, it is shown that simple expressions are obtained for the complex eigenvalues responsible 
for absorption. A qualitative understanding of some of the basic features of pole patterns results from a 
consideration of the approximations to both wave functions and dispersion surface. 

1. Introduction 

The main objective of the following discussion is to 
bring out the physical content of the formulae for the 
dispersion surface and the diffracted amplitudes con- 
tained in part I (Ozorio de Almeida, 1975). To begin 
with we analyse limiting regions of the two-dimensional 
dispersion surface, obtaining results which should 
remain approximately valid over wider domains, 
though this has yet to be computationally verified. 
Subsequently the results of {}4 of Berry (1971) are 
generalized, leading to the semiclassical approxima- 
tion of the Bloch functions. This in its turn permits one 
to deduce simple formulae for the imaginary com- 
ponents of the eigenvalues, which hold for all orienta- 
tions. Finally, in {} 6, we begin to see how the preceding 
considerations can be directly applied to the under- 
standing of pole patterns [see e.g. Berry, Buxton & 
Ozorio de Almeida (1973), again referred to as BBOA]. 

Symbols occurring in part I are not redefined here. 

2. Approximations to the KKR eigenvalue equation 

(i) Born approximation 
In the weak scattering limit the assumption is made 

that the wave function in equation (4.5) of part I can 
be approximated by a plane wave: 

* Previously in the H. H. Wills Laboratory of Physics, 
Bristol, England. 

1 exp (iKG. R) 
e x p ( i K 0 . R ) =  ~- ~ -  S - -K~  

x I dZR'O(R ') exp ( - i G .  R ' ) .  
mesh 

(2-1) 

The Born apprDximation demands that all but the 
G = 0  term be neglected, leading to the eigenvalue 
condition 

sB°rn-Kz=(O(R))  . (2.2) 

This result, which also follows simply from perturba- 
tion theory (see Ziman, 1964), is not valid even for 
weak potentials at a zone boundary. A proof of condi- 
tion (2.2) directly from the KKR eigenvalue equation 
is too involved to be included here, but it is worth 
pointing out that it involves summations to infinite 
order in angular momentum, thus indicating that use 
of the full KKR determinant to calculate the dispersion 
surface is not advisable when S>> (O(R)). 

The empty-lattice limit, ( 0 ) ~  0 in (2.2), is also 
satisfied by the APW equation, since a whole row 
(G = 0) of the determinant vanishes. 

(ii) Small-energy limit 
Analysis of the behaviour of phase shifts and struc- 

ture constants shows that for ISI--->0 the K K R  
determinant tends to a diagonal form. Except for 
anomalous cases referred to as partial wave resonances, 
when given phase shifts may tend to infinity, it is also 
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found that the zeroth phase shift is dominant, so that 

1 + ~'0(K0, S) exp (it]t) sin r/z s ,_.00 (2.3) 

To resolve the indeterminacy hidden in (2.3) one 
makes use of the reciprocal-lattice expansion of the 
structure constant, (B.8) of part I, which leads to 

]O(X~RM) 
(2.4) 

s -  g~ 2nRML0(S) 
@ 

where Kz(x) is a modified Hankel function (see Berry & 
Ozorio de Almeida, 1973). 

At high energies, the off-diagonal terms of the KKR 
determinant are not small, and yet one can show that 
the Born approximation is included in the weaker ap- 
proximation (2.6). Thus, the same diagonal approxi- 
mation is valid for very high energies, negative energies 
and small energies, and computations are planned to 
assess its validity over the rest of the range. 

Finally, if K0 is not near a Brillouin zone boundary, 
we have 

S - K ~ =  12rcRMLo(S), (2.5) 

which can be observed to take the same form as (2.2) 
in the limit of weak potentials. 

(iii) Negative energies 
This is the region where the K K R  method is most 

transparent. The structure constants decrease exponen- 
tially as the energy is lowered, which follows from 
(B.5) in part I, it being again possible, therefore, to use 
a diagonal expansion of the determinant. This leads to 
the eigenvalue condition 

1 + ~0(Ko, S) ~ (cot r / z - i ) = 0 .  (2.6) 
l 

Deep in the core of the potential we expect very flat 
bands, near to the level of bound states of a single 
'muffin-tin', since there will be very little tunnelling 
between the wells. This picture is exactly reflected in 
the form taken by (2.6): the bound state of angular 
momentum l will match almost exactly to an exponen- 
tially decreasing wave outside the well, causing one of 
the terms of the sum over l to blow up. In the limit 
when s - - + - c ~ ,  the eigenvalue equation becomes 
simply the single-well bound-state condition 

1 0 
Lz(S) = Kz[(- S)I/2RM] OR Kz[(- S)'/2RM], (2.7) 

Koy 
/ 1  M 

A XI ~yK°X 

Fig. 1. Special points  of  the two-dimensional  Briliouin zone. 

3. Effect of symmetry 

Further simplifications arise when the wave vector K0 
is in one of the symmetry directions or boundaries of 
the Brillouin zone labelled in Fig. 1. 

There exist excellent accounts of group-theoretical 
aspects of band structure [Heine (1960) deals specifical- 
ly with two-dimensional examples], so that one can 
limit the discussion to the formulae derived in 
part I. 

Firstly we notice from (4.7) in part I that, if A is a 
symmetry operation belonging to the little group of the 
wave vector K0, f¢(AR) = fg(R). It follows that, if A is a 
rotation by an angle A0, fgz=0, unless I=n(2zc/AO), 
where n is any integer. For K0 lying on the lines A and 
S, the little group is restricted to mirror symmetry, and 
we find that the only restriction is that ffz must be real 
if I is even, or pure imaginary if I is odd. 

To this must be added the knowledge that only 
Bloch functions belonging to an irreducible representa- 
tion of the little group can be intrinsically degenerate. 
Thus, for positions S and A, ~,~ must be even or odd 
with respect to the mirror symmetry across the 0 = 0  
axis which implies that a_ z = ( - 1 )Za z or - a_ z = ( - 1 )Za z 
respectively. The effect of rotational symmetries is the 
same as in the preceding paragragh, i.e. az=0 unless 
l= n(2rc/AO). 

Taken together the simplifications of both the wave 
functions and the matrix elements lead to reductions in 
the size of the K K R  matrix if K0 lies in a symmetry 
direction. In the APW method one constructs Bloch 
functions of the appropriate symmetry by matching 
angular momentum functions to symmetrized plane 
waves of the same irreducible representation of the 
wave vector. 

It is evident that the diagonal approximations put 
forward in the preceding section will be most accurate 
near the points of highest symmetry. The qualitative 
feeling gained for the nature of the negative energy 
states can now be refined. In the limit where S --> - oo 
the potential seen by the wave function has complete 
circular symmetry. The eigenvalues are then doubly 
degenerate with the exception of the l =  0 states. As one 
approaches S=0 ,  these bands start to split in the 
general regions &the  Brillouin zone, the split spreading 
later to the points of high symmetry. The approximate 
eigenvalue condition (2.6) cannot give this fine splitting 
though it does give a departure from complete flatness 
for the bound bands. 
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4. Semiclassical wave functions 

The semiclassical approximation for the wave func- 
tion is obtained by extending the form of the eigen- 
vector solutions of the KKR matrix equation, valid 
in the limit S --~ + oo to the whole of the energy range. 
The justification is that in the semiclassical regime 
only a small proportion of the contributing states have 
small values of ISI. For negative energies the wave 
functions are taken to have a unique value of l, whereas 
for positive energies the limiting solutions have coef- 
ficients which are the same as for plane waves. 

It is necessary to recall some of the formulae con- 
cerning the nature of partial waves in two dimensions, 
derived by Berry & Ozorio de Almeida (1973), before 
proceeding to the form of the Bloch functions. There 
it was shown that in the classically allowed region, i.e. 
where S>  U(R)-lZ/R 2, the semi-classical approxima- 
tion to the lth partial wave is 

rz(R)~_cos (cPz(RI, R)-rc/4)/[RQ,(R)] l/z, (4.1) 

where R I = 0  for l=0 ,  or else it is the smallest turning 
point (for which S -  O(R) - 12/R 2 = 0); also Q2 = S -  
O(R)-12/R 2 and 

f 
R 

• ~(R~,R)= Q,(R)dR. 
R1 

(4.2) 

In the classically forbidden region (Q2 < 0) the partial 
waves are exponentially small and can be neglected in a 
first approximation. In this way for negative energies 
the degenerate pairs of Bloch functions become 

f lO cos 
cos (~z(R1, R) - re/4) 

t sin 10 

z~(R)= [RQ~(R)] 1/2 [2  1R2dR/Q~(R)] 
R1 

0 

1/2 

(classically allowed region) 

(classically forbidden region) 

(4.3) 

where the exponentially small wave function has been 
neglected, and in the normalization integral, taken 
between the two turning points, cos 2 has been set equal 
to ½, thus neglecting an oscillatory integral. For posi- 
tive energies the angular momentum expansion of a 
plane wave together with the partial wave solutions 
(4.1) lead to 

where, beside the approximations used previously, the 
unit cell has been assumed circular. The presence of the 
upper limit to the angular momentum summation, 

l m a x ( S j )  : oJ~'ll2D'I~'W _ S , (4.5) 

is consistent with the assumption that the wave func- 
tion can be neglected in the classically forbidden region. 
Near S = 0  these expressions for the wave function 
break down, but in the semiclassical limit the contribu- 
tion from this range is negligible. 

The semiclassical approximations given by (4.3) and 
(4.4) are considerably cruder than the diagonal for- 
mulae for the eigenvalues. This is a similar situation to 
that found in perturbation theory where one always 
knows the energy to an order better than the eigen- 
function. 

5. Complex eigenvalues 

The way to take absorption into account is indicated in 
§6 of BBOA. It should be noted that the formula for 
the imaginary part of the eigenvalue S J" 

SJ ~_ I d2RIz~(R)I20'(R), (5-I) 
d m e s h  

where Ui(R) is the imaginary component of the poten- 
tial, does not in principle necessitate the use of the 
semiclassical approximations which are here genera- 
lized to two dimensions. What is generally valid and 
useful is to circularize the unit mesh in (5.1), since the 
greatest contributions to the imaginary potential arise 
from near the atomic strings. 

It is important to understand just how SJ varies 
among the Bloch waves j for varying K0 and E, the 
incident beam energy. Use of the semiclassical Bloch 
functions, given in §4, in (5.1) gives 

f 
R w - s  

Re dRO'(R)/Q~(R) 
dO 

sj(sj)= iRw_ s (s<0) (5.2) 
Re dRIQ~(R) 

dO 

and 
p R w _  $ /max 

Re ~ dRO'(R) ~ eda{(R) 
0 l = 0  

Sj(Sj) ........ w-s ,m.x (S> 01. (5.3) 
ReIS dR ~ e,/Q~(R) 

l = 0  

The 'real part' notation ensures that only classically 
accessible regions contribute to the integrals. 

~(R)= 

,m= [ 41 el cos ~I(R~,R)- cos l O+ [RQ~(R)] 1/z 
/ = 0  

R2 . . . . . . . . . .  "11/2 . . . . . . .  

(classically allowed region) 
0 (classically forbidden region) 

(4.4) 
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Under fully semiclassical conditions one can replace 
the sum over l in equation (5.3) by an integral, leading 
to the simple result 

nw-s dRO'(R)/(S,-U(R))  ~/a 
0 

SJ(Sj) = (S>O) .  (5.4) 
S~ w-s dR/[S -  U(R)] ~/2 

It is important to note that the variation of SJ with 
K0 is only of the form SJ[Sj(Ko)], i.e. universal curves 
SJ of Sj are predicted for all orientations. 

Examination of (5.4) shows that absorption will 
decrease with 'energy' when S >  0. Absorption will be 
strongest for S <  0, the dominant contribution coming 
from the region near the smallest turning point. Thus, 
for l ¢ 0  the absorption will diminish as the angular 
momentum is increased, whereas the variation of SJ 
among partial waves of the same angular momentum 
will be small. For l = 0  the situation is different, since 
there is only one turning point. In this case we find 
that the absorption will decrease sharply as the energy 
increases towards zero. 

6. Qualitative considerations about pole patterns 

We are now in a position to analyse directly some fea- 
tures of the diffracted amplitudes. Inserting the semi- 
classical wave functions into formula (2.12) of part I 
we find for the bright-field beam 

[ I gw-s A0(K0,z) = 0~ ~ Re RdR 
J<0 d0 

cos {¢{(R~,R)-n/4} J~(KoR) exp (-iSjz/2ko) 
× c~{RQ~(R)}I/z 

[ S: w-s RdR ,m~" 
+ ~ E  Re E e t  

j>o C~ 1=0 

cos {tP{(R,, R ) -  n/4} ]2 
x {RQ~(R)}I/2 Jz(KoR) exp ( - iSjz /2ko) ,  

(6.1) 

where the cjS are normalization factors. If, in the 
same way as Berry (1971), we use the criterion that 
only integrals having stationary points will give a large 
contribution to the diffracted amplitude it is seen that 
bound states of angular momentum l will only contri- 
bute if K~ < [Q2(R)]ma x. Correspondingly, by approxi- 
mating the angular momentum sum by an integral and 
applying stationary-phase arguments a second time, 

one finds that the contribution of the nearly-flee states 
is negligible as K0--+ 0. 

Ideal pole patterns as described in BBOA effectively 
provide a map of At(K0 ) for a constant thickness Z. 
The arguments presented above are thus tantamount 
to saying that the centre of the figure will be dominated 
by interference among the bound states, whereas the 
outer regions will only be sensitive to the nearly free 
states. A further investigation of equation (6.1) shows 
that only the modulus of the wave vector Ko appears 
explicitly. Since it was shown before that we must 
expect bound bands to be flat and to have approximate- 
ly uniform excitation, it follows that those features of 
pole patterns that depend exclusively on the bound 
states will have near-circular symmetry. The nearly free 
bands will be strongly dependent on K0. 

As well as this, one must take into account that if 
S >  0 the circularization of the unit mesh was seen to 
be a relatively crude approximation. Thus it is to be 
expected that the pattern due to the nearly free states 
will not show circular symmetry. 

So far the effect of absorption of the diffracted 
amplitudes has been left out. As was shown in §5, it 
will be heaviest for the bound states. The complete 
picture is thus that in the outer regions of pole patterns 
there will be features that depend mostly on nearly-free 
states and exhibit the symmetry of the Brillouin zone. 
Near the centre of the pole one may find a set of con- 
centric rings connected with the bound bands, but this 
pattern will tend to disappear as the thickness of the 
specimen is increased. 
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