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I1. Analysis and Semiclassical Approximations
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The two-dimensional version of the KKR eigenvalue equation is analysed in different limiting situations.
and reduction due to symmetry is discussed. With the aid of the semiclassical approximation to the
Bloch functions, it is shown that simple expressions are obtained for the complex eigenvalues responsible
for absorption. A qualitative understanding of some of the basic features of pole patterns results from a
consideration of the approximations to both wave functions and dispersion surface.

1. Introduction

The main objective of the following discussion is to
bring out the physical content of the formulae for the
dispersion surface and the diffracted amplitudes con-
tained in part I (Ozorio de Almeida, 1975). To begin
with we analyse limiting regions of the two-dimensional
dispersion surface, obtaining results which should
remain approximately valid over wider domains,
though this has yet to be computationally verified.
Subsequently the results of §4 of Berry (1971) are
generalized, leading to the semiclassical approxima-
tion of the Bloch functions. This in its turn permits one
to deduce simple formulae for the imaginary com-
ponents of the eigenvalues, which hold for all orienta-
tions. Finally, in §6, we begin to see how the preceding
considerations can be directly applied to the under-
standing of pole patterns [see e.g. Berry, Buxton &
Ozorio de Almeida (1973), again referred to as BBOA].

Symbols occurring in part I are not redefined here.

2. Approximations to the KKR eigenvalue equation

(i) Born approximation

In the weak scattering limit the assumption is made
that the wave function in equation (4.5) of part I can
be approximated by a plane wave:
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The Born approximation demands that all but the
G=0 term be neglected, leading to the eigenvalue
condition
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This result, which also follows simply from perturba-
tion theory (see Ziman, 1964), is not valid even for
weak potentials at a zone boundary. A proof of condi-
tion (2.2) directly from the KKR eigenvalue equation
is too involved to be included here, but it is worth
pointing out that it involves summations to infinite
order in angular momentum, thus indicating that use
of the full KKR determinant to calculate the dispersion
surface is not advisable when S>> (U(R)>.

The empty-lattice limit, {(U)—0 in (2.2), is also
satisfied by the APW equation, since a whole row
(G=0) of the determinant vanishes.

(ii) Small-energy limit

Analysis of the behaviour of phase shifts and struc-
ture constants shows that for |S]—0 the KKR
determinant tends to a diagonal form. Except for
anomalous cases referred to as partial wave resonances,
when given phase shifts may tend to infinity, it is also
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found that the zeroth phase shift is dominant, so that
1+ 9y(K,,S) exp (in,) sinn, s 3,0 . 2.3)

To resolve the indeterminacy hidden in (2.3) one
makes use of the reciprocal-lattice expansion of the
structure constant, (B.8) of part I, which leads to

Z Jo(KGRy) P

< S—K%L  2aR,LyS) (24)

Finally, if K, is not near a Brillouin zone boundary,
we have

S—K§=%2nRMLO(S) , 2.5
which can be observed to take the same form as (2.2)
in the limit of weak potentials.

(iii) Negative energies

This is the region where the KKR method is most
transparent. The structure constants decrease exponen-
tially as the energy is lowered, which follows from
(B.5) in part I, it being again possible, therefore, to use
a diagonal expansion of the determinant. This leads to
the eigenvalue condition

1+ 94Ky, S) 3 (cot 7, —i)=0. (2.6)
I

Deep in the core of the potential we expect very flat
bands, near to the level of bound states of a single
‘muffin-tin’, since there will be very little tunnelling
between the wells. This picture is exactly reflected in
the form taken by (2.6): the bound state of angular
momentum / will match almost exactly to an exponen-
tially decreasing wave outside the well, causing one of
the terms of the sum over / to blow up. In the limit
when s— —oo, the eigenvalue equation becomes
simply the single-well bound-state condition
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Fig. 1. Special points of the two-dimensional Brillouin zone.
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where K)(x) is a modified Hankel function (see Berry &
Ozorio de Almeida, 1973).

At high energies, the off-diagonal terms of the KKR
determinant are not small, and yet one can show that
the Born approximation is included in the weaker ap-
proximation (2.6). Thus, the same diagonal approxi-
mation is valid for very high energies, negative energies
and small energies, and computations are planned to
assess its validity over the rest of the range.

3. Effect of symmetry

Further simplifications arise when the wave vector K,
is in one of the symmetry directions or boundaries of
the Brillouin zone labelled in Fig. 1.

There exist excellent accounts of group-theoretical
aspects of band structure [Heine (1960) deals specifical-
ly with two-dimensional examples], so that one can
limit the discussion to the formulae derived in
part L.

Firstly we notice from (4.7) in part I that, if A is a
symmetry operation belonging to the lirtle group of the
wave vector K,, #(AR)= %(R). It follows that, if A is a
rotation by an angle 46, ¢,=0, unless [/=n(2n/40),
where # is any integer. For K, lying on the lines 4 and
2, the little group is restricted to mirror symmetry, and
we find that the only restriction is that ¢, must be real
if [ is even, or pure imaginary if / is odd.

To this must be added the knowledge that only
Bloch functions belonging to an irreducible representa-
tion of the little group can be intrinsically degenerate.
Thus, for positions X and 4, yx must be even or odd
with respect to the mirror symmetry across the §=0
axis which implies thata_,=(—1)'a,or —a_,=(—1)!g,
respectively. The effect of rotational symmetries is the
same as in the preceding paragragh, i.e. a,=0 unless
I=n(2r/46).

Taken together the simplifications of both the wave
functions and the matrix elements lead to reductions in
the size of the KKR matrix if K, lies in a symmetry
direction. In the APW method one constructs Bloch
functions of the appropriate symmetry by matching
angular momentum functions to symmetrized plane
waves of the same irreducible representation of the
wave vector.

It is evident that the diagonal approximations put
forward in the preceding section will be most accurate
near the points of highest symmetry. The qualitative
feeling gained for the nature of the negative energy
states can now be refined. In the limit where S — —oco
the potential seen by the wave function has complete
circular symmetry. The eigenvalues are then doubly
degenerate with the exception of the /=0 states. As one
approaches S=0, these bands start to split in the
general regions of the Brillouin zone, the split spreading
later to the points of high symmetry. The approximate
eigenvalue condition (2.6) cannot give this fine splitting
though it does give a departure from complete flatness
for the bound bands.
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4. Semiclassical wave functions

The semiclassical approximation for the wave func-
tion is obtained by extending the form of the eigen-
vector solutions of the KKR matrix equation, valid
in the limit § — + oo to the whole of the energy range.
The justification is that in the semiclassical regime
only a small proportion of the contributing states have
small values of |S|. For negative energies the wave
functions are taken to have a unique value of /, whereas
for positive energies the limiting solutions have coef-
ficients which are the same as for plane waves.

It is necessary to recall some of the formulae con-
cerning the nature of partial waves in two dimensions,
derived by Berry & Ozorio de Almeida (1973), before
proceeding to the form of the Bloch functions. There
it was shown that in the classically allowed region, i.e.
where S> U(R)—/%/R?, the semi-classical approxima-
tion to the /th partial wave is

7,(R) ~cos (Dy(Ry, R)—n/4)[[RQ(R)]V?, (4.1)
where R, =0 for /=0, or else it is the smallest turning
point (for which S— U(R)—[*/R?=0); also Qi=S—
U(R)—1*/R* and

R
&,(R,, R)= S O(R)dR. 4.2)

R,

In the classically forbidden region (Q?% <0) the partial
waves are exponentially small and can be neglected in a
first approximation. In this way for negative energies
the degenerate pairs of Bloch functions become

cos 16

cos (Py(Ry, R)— n/4) { sin /0

R2 1/2
o®—{ ReR: [ 3 arioiw] @y

(classically allowed region)

0 (classically forbidden region)

where the exponentially small wave function has been
neglected, and in the normalization integral, taken
between the two turning points, cos? has been set equal
to 1, thus neglecting an oscillatory integral. For posi-
tive energies the angular momentum expansion of a
plane wave together with the partial wave solutions
(4.1) lead to

Imax

7;(R)=

where, beside the approximations used previously, the
unit cell has been assumed circular. The presence of the
upper limit to the angular momentum summation,

lmax(Sj) = S_li/Z-RW—S s (45)

is consistent with the assumption that the wave func-
tion can be neglected in the classically forbidden region.
Near S=0 these expressions for the wave function
break down, but in the semiclassical limit the contribu-
tion from this range is negligible.

The semiclassical approximations given by (4.3) and
(4.4) are considerably cruder than the diagonal for-
mulae for the eigenvalues. This is a similar situation to
that found in perturbation theory where one always
knows the energy to an order better than the eigen-
function.

5. Complex eigenvalues

The way to take absorption into account is indicated in
§6 of BBOA. It should be noted that the formula for
the imaginary part of the eigenvalue S!:

s;:S (5-1)

where U'(R) is the imaginary component of the poten-
tial, does not in principle necessitate the use of the
semiclassical approximations which are here genera-
lized to two dimensions. What is generally valid and
useful is to circularize the unit mesh in (5.1), since the
greatest contributions to the imaginary potential arise
from near the atomic strings.

It is important to understand just how S} varies
among the Bloch waves j for varying K, and E, the
incident beam energy. Use of the semiclassical Bloch
functions, given in §4, in (5.1) gives

d*Rlz(R)IPT(R) ,
h

mes!

Re S:w dRU(R)/Qi(R)

SiS,)= — (S<0) (5.2
ReS dR/QI(R)
0
and
Rw-s Imax
ReS dRUYR) > &/ QI(R)
Sisy=— = __I=0 (S>0). (5.3)

Rw -5
ReS dR > &/QI(R)

0

The ‘real part’ notation ensures that only classically
accessible regions contribute to the integrals.

gos; cos[(ﬁ,(Rl,R —-}] ciosl (9+ %)/[RQ{<R?]1/2

(5304, omorn]”

(4.4)

(classically allowed region)
(classically forbidden region)
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Under fully semiclassical conditions one can replace
the sum over / in equation (5.3) by an integral, leading
to the simple result

s Ry —

"7 ARUUR)/(S, — U(R)?

Sis)y="= (S>0). (5.4)

| aris - oy
0

It is important to note that the variation of S} with
K, is only of the form S{S;(K,)], i.e. universal curves
St of S; are predicted for all orientations.

Examination of (5.4) shows that absorption will
decrease with ‘energy’ when S> 0. Absorption will be
strongest for S<0, the dominant contribution coming
from the region near the smallest turning point. Thus,
for 1540 the absorption will diminish as the angular
momentum is increased, whereas the variation of S}
among partial waves of the same angular momentum
will be small. For /=0 the situation is different, since
there is only one turning point. In this case we find
that the absorption will decrease sharply as the energy
increases towards zero.

6. Qualitative considerations about pole patterns

We are now in a position to analyse directly some fea-
tures of the diffracted amplitudes. Inserting the semi-
classical wave functions into formula (2.12) of part I
we find for the bright-field beam

Ao(Ko, Z) =0 Z

| ‘;RW—S
J<o J0

cos {@J(Ry, R) —n/4}
cH{RQUR) I

Ry - Imax
+o [ReS N SEchI_{_ > g
>0 ¢ =0

cos {D{(R,, R) —n/4}
{ROUR}?

RdAR

J,(KOR)] " exp (—iS,2/2ks)

0

7, (KOR)]  exp (—iS,z/2ks)
6.1)

where the c¢;S are normalization factors. If, in the
same way as Berry (1971), we use the criterion that
only integrals having stationary points will give a large
contribution to the diffracted amplitude it is seen that
bound states of angular momentum / will only contri-
bute if K3<[Q%(R)]max. Correspondingly, by approxi-
mating the angular momentum sum by an integral and
applying stationary-phase arguments a second time,
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one finds that the contribution of the nearly-free states
is negligible as K, — 0.

Ideal pole patterns as described in BBOA effectively
provide a map of A4(K,) for a constant thickness Z.
The arguments presented above are thus tantamount
to saying that the centre of the figure will be dominated
by interference among the bound states, whereas the
outer regions will only be sensitive to the nearly free
states. A further investigation of equation (6.1) shows
that only the modulus of the wave vector K, appears
explicitly. Since it was shown before that we must
expect bound bands to be flat and to have approximate-
ly uniform excitation, it follows that those features of
pole patterns that depend exclusively on the bound
states will have near-circular symmetry. The nearly free
bands will be strongly dependent on K,.

As well as this, one must take into account that if
S>0 the circularization of the unit mesh was seen to
be a relatively crude approximation. Thus it is to be
expected that the pattern due to the nearly free states
will not show circular symmetry.

So far the effect of absorption of the diffracted
amplitudes has been left out. As was shown in §5, it
will be heaviest for the bound states. The complete
picture is thus that in the outer regions of pole patterns
there will be features that depend mostly on nearly-free
states and exhibit the symmetry of the Brillouin zone.
Near the centre of the pole one may find a set of con-
centric rings connected with the bound bands, but this
pattern will tend to disappear as the thickness of the
specimen is increased.
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